روش تبدیل دیفرانسیل تعمیم یافته برای حل معادلات دیفرانسیل جزئی خطی و غیر خطی از مرتبه کسری

thesis
abstract

در این پایان‎ نامه, یک روش تحلیلی عددی برای حل معادله دیفرانسیل جزئی خطی و غیرخطی از مرتبه کسری بفرم ‎$ _{t_{0}}‎^{‎c‎}‎ d_{t}^{alpha}u(x,t)=f(x,t,u(x,t)) $‎ با شرط اولیه ‎$ u(x,0)=f(‎x‎) $‎ را بررسی می کنیم که در آن ‎‎_{‎t‎_{0}‎‎}‎^{‎c‎}‎‎d_{t}^{alpha} ‎ مشتق از مرتبه کسری از نوع مشتق کاپوتو و $ ‎‎0<alphaleq 1 $‎ می باشد. در این کار, روش تبدیل دیفرانسیل تعمیم یافته ‎(gdtm) ‎ ‎‎را برای حل مسئله در نظر می گیریم.

similar resources

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

full text

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

پایداری تعادل در معادلات دیفرانسیل غیر خطی

در این مقاله در مورد پایداری تعادل در سیستم معادلات دیفرانسیل غیر خطی بحث شده است ضمن چند قضیه و مثال معیارهایی برای تعیین اینکه آیا این معادلات در نقطه به خصوصی پایدارند یا نه داده شده اند دراین مطالعه دستگاههای اتونوموس و غیز اتونوموس هر دو مورد بررسی قرار گرفته اند .

full text

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

full text

بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری

عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023